Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Feng Bao, ${ }^{\text {a }}$ Xingqiang Lü, ${ }^{\text {a }}$

 Qing Wu, ${ }^{\text {a }}$ Beisheng Kang ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}{ }^{\boldsymbol{*}}$${ }^{\text {a School of Chemistry and Chemical Engineering, }}$ Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.133$
Data-to-parameter ratio $=16.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

5-Methyl-2-phenyl-4-[(Z)-(2-tolylamino)-phenylmethylene]pyrazol-3(2H)-one

The NH unit on the exocyclic $\mathrm{C}=\mathrm{C}$ double bond in the title compound, $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$, lies on the same side of the double bond as the carbonyl unit of the pyrazolone ring, and the two interact through an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond $[2.695$ (2) \AA A .

Comment

As the metal complexes of N, O-chelates are effective catalysts in the polymerization of α and other polar olefins (Peukert \& Keim, 1983; Reuben \& Wittcoff, 1988), a number of studies have been directed towards the development of the late transition metal complexes of such ligands (Brookhart \& Wagner, 1996; Johnson et al., 1996; Mecking et al., 1998; Rix et al., 1996; Wang et al., 1998). The studies have been complemented by a report that the β-ketoamino unit of the Ni complex is responsible for catalytic activity in the homo- and copolymerization of norbornene and methyl methacrylate (He et al., 2003). The class of pyrazolones, as represented by the title compound, (I), can be conveniently synthesized by condensing commercially available 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone with an amine (Holzer et al., 1999; Wang et al., 2003). In the title compound, the pyrazole (N1/N2/C7C 9) ring is flat, and is coplanar with the $\mathrm{C} 8 / \mathrm{C} 11 / \mathrm{C} 12 / \mathrm{N} 3$ fragment [dihedral angle $=3.8(1)^{\circ}$]. The partial double-bond character of the $\mathrm{C} 8-\mathrm{C} 11$ bond gives rise to a planar configuration of the $\mathrm{C} 8 / \mathrm{C} 11 / \mathrm{C} 12 / \mathrm{C} 18 / \mathrm{N} 3$ fragment; the planar feature must be responsible for locking the amino H atom into a hydrogen-bonding position with the carbonyl O atom [$\mathrm{N} 3 \cdots \mathrm{O} 1=2.695$ (2) Å]. With respect to the $\mathrm{C} 11-\mathrm{N} 3$ bond, the aromatic ring bonded to the C end is twisted by $83.2(2)^{\circ}$ whereas that bonded to the N end is twisted by $60.0(1)^{\circ}$. The compound resulting from the condensation of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and o-aminophenol also features an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction [2.750 (3) Å], but it exists as a centrosymmetric hydrogen-bonded dimer owing to the hydroxycarbonyl interaction $[\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=2.724$ (3) \AA ㅇ] (Wang et al., 2002). The 1-naphthyl homolog also features a short intramolecular $\mathrm{N} \cdots \mathrm{O}$ hydrogen bond [2.69 (3) Å] (Wang et al., 2003).

(I)

Experimental

1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone ($2.50 \mathrm{~g}, 9.0 \mathrm{mmol}$) and 2-toluidine ($1.01 \mathrm{~g}, 9.4 \mathrm{mmol}$) were dissolved in ethanol (35 ml) and the solution heated under reflux for several hours. The solvent was removed and the pure product obtained upon recrystallization from a

Received 20 November 2003 Accepted 18 December 2003 Online 10 January 2004

1:1 ethanol $/ n$-heptane mixture (35 ml) in about 80% yield. Crystals were grown from ethanol as solvent. CHN elemental analysis, calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$: C 78.45 , H 5.76 , $\mathrm{N} 111.44 \%$; found: C 78.25, H 5.70, N 11.41%.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$
$M_{r}=367.44$
Triclinic, $P \overline{1}$
$a=9.792(1) \AA$
$b=9.832(1) \AA$
$c=11.556(2) \AA$
$\alpha=101.560(2)^{\circ}$
$\beta=99.974(2)^{\circ}$
$\gamma=108.034(2)^{\circ} \AA^{\circ}$
$V=1002.9(2) \AA^{3}$

Data collection

Bruker SMART area-detector diffractometer
φ and ω scans
Absorption correction: none
8614 measured reflections
4346 independent reflections

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.217 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 848 \\
& \quad \text { reflections } \\
& \theta=2.5-26.5^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.50 \times 0.35 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0626 P)^{2}\right. \\
\quad+0.1426 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-_{0} 0.14 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.133$
$S=1.00$
4346 reflections
259 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 1
ORTEPII (Johnson, 1976) plot of (I), with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

H atoms were placed at calculated positions in the riding model approximation $(\mathrm{C}-\mathrm{H}=0.93 \AA$ for the aromatic H atoms and $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$ for the aliphatic H atoms), and their displacement parameters were set to $1.2 U_{\text {eq }}$ of their parent atoms. The amino H atom was located and refined with an $\mathrm{N}-\mathrm{H}$ distance restraint of 0.85 (1) \AA.

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China, the Natural Science Foundation of Guangdong Province, Sun Yat-Sen University and the University of Malaya for supporting this work.

References

Brookhart, M. \& Wagner, M. I. (1996). J. Am. Chem. Soc. 118, 7219-7220. Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
He, X. H., Yao, Y. Z. \& Wu, Q. (2003). Polym. Mater. Sci. Eng. pp. 89-90.
Holzer, W., Mereiter, K. \& Plagens, B. (1999). Heterocycles, 50, 799-818.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Johnson, L. K., Mecking, S. \& Brookhart, M. (1996). J. Am. Chem. Soc. 118, 267-268.
Mecking, S., Johnson, L. K. \& Brookhart, M. (1998). J. Am. Chem. Soc. 120, 888-889.
Peukert, M. \& Keim, W. (1983). Organometallics, 20, 115-127.
Reuben, B. \& Wittcoff, H. (1988). J. Chem. Educ. 65, 605-607.
Rix, F. C., Brookhart, M. \& White, P. S. (1996). J. Am. Chem. Soc. 118, 47464764.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, C., Friedrich, S., Younkin, T. R., Li, R. T., Grubbs, R. H., Bansleben, D. A. \& Day, M. W. (1998). Organometallics, 17, 3149-3151.

Wang, J.-L., Zhang, S.-M. \& Li, A.-X. (2003). Pol. J. Chem. 77, 1053-1058.
Wang, J.-L., Zhang, S.-M. \& Miao, F.-M. (2002). Acta Cryst. E58, o1365-o1366.

[^0]: (C) 2004 International Union of Crystallography

